Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Defunctionalizing intracellular organelles such as mitochondria and peroxisomes with engineered phospholipase A/acyltransferases.

blue iLID Cos-7 Organelle manipulation
Nat Commun, 29 Jul 2022 DOI: 10.1038/s41467-022-31946-5 Link to full text
Abstract: Organelles vitally achieve multifaceted functions to maintain cellular homeostasis. Genetic and pharmacological approaches to manipulate individual organelles are powerful in probing their physiological roles. However, many of them are either slow in action, limited to certain organelles, or rely on toxic agents. Here, we design a generalizable molecular tool utilizing phospholipase A/acyltransferases (PLAATs) for rapid defunctionalization of organelles via remodeling of the membrane phospholipids. In particular, we identify catalytically active PLAAT truncates with minimal unfavorable characteristics. Chemically-induced translocation of the optimized PLAAT to the mitochondria surface results in their rapid deformation in a phospholipase activity dependent manner, followed by loss of luminal proteins as well as dissipated membrane potential, thus invalidating the functionality. To demonstrate wide applicability, we then adapt the molecular tool in peroxisomes, and observe leakage of matrix-resident functional proteins. The technique is compatible with optogenetic control, viral delivery and operation in primary neuronal cultures. Due to such versatility, the PLAAT strategy should prove useful in studying organelle biology of diverse contexts.
2.

Defunctionalizing Intracellular Organelles with Genetically-Encoded Molecular Tools Based on Engineered Phospholipase A/Acyltransferases (PLAATs).

blue iLID Cos-7 Organelle manipulation
bioRxiv, 10 Oct 2021 DOI: 10.1101/2021.10.10.463806 Link to full text
Abstract: Organelles vitally achieve multifaceted functions to maintain cellular homeostasis. Genetic and pharmacological approaches to manipulate individual organelles are powerful in probing their physiological roles. However, many of them are either slow in action, limited to certain organelles, or rely on toxic agents. Here, we designed a generalizable molecular tool utilizing phospholipase A/acyltransferases (PLAATs) for rapid induction of organelle defunctionalization via remodeling of the membrane phospholipid composition. In particular, we identified a minimal, fully catalytic PLAAT with no unfavorable side effects. Chemically-induced translocation of the engineered PLAAT to the mitochondria surface resulted in their rapid deformation in a phospholipase activity dependent manner, followed by loss of luminal proteins as well as dissipated membrane potential, thus invalidating the functionality. To demonstrate wide applicability, we then adapted the molecular tool in peroxisomes, and observed leakage of matrix-resident functional proteins. The technique was compatible with optogenetic control, viral delivery and operation in primary neuronal cultures. Due to such versatility, the PLAAT strategy should present a novel utility in organelle biology of diverse contexts.
Submit a new publication to our database